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Abstract. Violation of unitarity for noncommutative field theory on compact space-times is considered.
Although such theories are free of ultraviolet divergences they still violate unitarity, while in a usual
field theory such a violation occurs when the theory is nonrenormalizable. The compactness of space-
like coordinates implies discreteness of the time variable which leads to the appearance of unphysical
modes and violation of unitarity even in the absence of a star-product in the interaction terms. Thus, this
conclusion holds also for other quantum field theories with discrete time. Violation of causality, among
others, occurs also in the case of the nonvanishing of the commutation relations between observables at
space-like distances with a typical scale of noncommutativity. While this feature allows for a possible
violation of the spin-statistics theorem, such a violation does not rescue the situation but makes causality
violation scale as the inverse of the mass appearing in the considered model, i.e., it becomes even more
severe. We also stress the role of smearing over the noncommutative coordinates entering the field operator
symbols.

1 Introduction

It is generally believed that the picture of space-time as
a manifold M should break down at very short distances,
namely distances of the order of the Planck length. One
possible approach to the description of physical phenom-
ena at small distances is based on noncommutative (NC)
geometry of the space-time. It has been shown that the
noncommutative geometry naturally appears in string the-
ory with a nonzero antisymmetric B-field [1]. Another
approach, starting from the study of a relation between
measurements at very small distances and black hole for-
mations, has been developed in [2]. The essence of the
noncommutative geometry consists in reformulating first
the geometry in terms of commutative algebras of smooth
functions, and then generalizing them to their noncommu-
tative analogs in terms of operators (or, more generally, to
use a C∗-algebra) generated by noncommuting space and
time coordinates: [x̂µ, x̂ν ] �= 0.

The Hilbert (Fock) space for a commutative and the
corresponding NC field theories are the same at the per-
turbative level. This is supported by the fact that the
quadratic part of the action is not affected by a star-
product. Moreover, this is the reason why there should be
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a map between any NC field theory and its commutative
limit: the degrees of freedom are the same.

Noncommutative field theories with noncommutativ-
ity of only space coordinates (while the time remains a
usual commutative variable) do not change crucially the
standard quantum mechanical formalism (one can develop
the usual Hamiltonian dynamics, define the corresponding
Schrödinger picture, etc.). Of course, this kind of noncom-
mutativity still essentially changes some properties of the
theory: in particular, it becomes nonlocal in the space-
like directions [3,4]. But such basic properties of physical
models as causality and unitarity are satisfied. This can
be traced back [3,4] to the fact that this theory describes
low energy excitations of a D-brane in the presence of a
background magnetic field (see [1] and references therein).

Field theories with space and time noncommutativ-
ity provide an interesting opportunity to test the possi-
ble breakdown of the conventional notion of time and the
familiar framework of quantum mechanics at the Planck
scale. As has been shown in [4–6], in the case of the model
derived from string theory with a background electric field
and in the flat space-time, noncommutativity of the time
coordinates of the corresponding Minkowski space and the
corresponding nonlocality in time result in violation of
both the causality and unitarity conditions.

Thus, the question whether there exists some self-con-
sistent theory with noncommutative time coordinate is of
great interest. The analysis in [4–6] shows that the vi-
olation of the basic principles of causality and unitarity
occurs at energies higher than the inverse scale of the pa-
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rameter of noncommutativity λ, i.e. for E � λ−1. Thus, if
some noncommutative theory implies an upper bound on
possible values of the energy, one may hope that it is free
of the problems with the violation of the basic physical
principles. In [7], we have shown that space-time quan-
tization on a two-dimensional cylinder leads to the en-
ergy spectrum, confined within the interval E ∈ [0, π/λ].
Therefore, it is natural to study the question of unitarity
and causality for this case. It is worth noticing that this
restriction on energy provides an improved ultraviolet be-
havior of the field theory on the NC cylinder: even planar
diagrams in this case prove to be convergent (in contrast
to the theory in the flat NC Minkowski space).

In fact, such a study has an even wider interest. The
point is that the restriction on the energy values appears
as a consequence of the discreteness of time (in the repre-
sentation where the time coordinate operator is diagonal).
On the other hand, attempts have been made to construct
quantum field theories with discrete time which is consid-
ered to be not only an intermediate regularization (as in
the lattice field theories) but to have fundamental physical
meaning [8] (for recent attempts see, e.g., the series of pa-
pers [9] and references therein). The problem of unitarity
has not been investigated for this kind of models.

In this letter, we shall show that the situation with the
violation of the unitarity condition on the cylinder is even
more severe than that in the case of the flat space-time.
More precisely, due to the discreteness of the time evolu-
tion, the unitarity requirement is violated even by planar
diagrams (which do not carry a trace of the star-product).
That means that the result is valid for any theory with a
discrete time variable and not only for the field theory
with the space-time noncommutativity.

This letter is arranged as follows. In Sect. 2, we present
some facts about the noncommutative cylinder and the
corresponding Φ4-field theory, necessary for further study.
In Sect. 3, we prove the violation of unitarity for planar
diagrams in one-loop approximation. Section 4 is devoted
to conclusions and remarks.

2 Field theory on a noncommutative cylinder

The points on a commutative cylinder C can be specified
by a real parameter t ∈ R and two complex parameters
x± = ρe±iα. The fields possess the following expansion:

Φ(t, α) =
∞∑

k=−∞

∫ ∞

−∞

dω
2π
Φ̃k(ω)eikα−iωt. (1)

In the noncommutative case [7] the parameters t, x±
are replaced by operators t̂, x̂± satisfying the commutation
relations

[t̂, x̂±] = ±λx̂±, [x̂+, x̂−] = 0, (2)

and the same constraint equation as in the commutative
case: x̂+x̂− = ρ2. The dimensionful (with the dimension of
length) parameter λ is an analog of the tensor θ in the case

of the Heisenberg-like commutation relation in the flat
Minkowski space. However, in the present case, the actual
parameter of the noncommutativity is the dimensionless
parameter η = λ/ρ.

The operators t̂, x̂± can be realized in the auxiliary
Hilbert space H = L2(S1,dα) as follows:

t̂ = −iλ∂α, x̂± = ρe±ikα. (3)

We specify the self-adjoint extension of ∂α by postulating
its system of eigenfunctions: ∂αfk(α) = ikfk(α), fk(α) =
eikα, k ∈ Z. Thus, we are dealing with a unitary irre-
ducible representation of the two-dimensional Euclidean
group E(2) specified by the value of the Casimir operator
x̂+x̂− = ρ2.

In analogy with the commutative case, we take the
fields to be operators in H = L2(S1,dα) possessing the
operator Fourier expansion:

Φ(t̂, α̂) =
∞∑

k=−∞

∫ +π/λ

−π/λ

dω
2π
Φ̃k(ω)eikα̂−iωt̂. (4)

For simplicity, we shall consider a real scalar field theory
which corresponds to the condition Φ†(t̂, α̂) = Φ(t̂, α̂). It
is important that since the spectrum of t̂ is discrete, we
have t = λn, n ∈ Z, and the integration over dω goes only
over a finite interval (−π/λ,+π/λ). We point out that the
operator Fourier expansion (4) is invertible:

Φ̃k(ω) =
1
2π

Tr [e−ikα̂+iωt̂Φ(t̂, α̂)]. (5)

This follows straightforwardly from the formula

1
2π

Tr [e−ik′α̂+iω′ t̂eikα̂−iωt̂] = δk′kδ
(S)(λω′ − λω), (6)

where δ(S)(ϕ) denotes the δ-function on a circle. The in-
verse usual Fourier transform of Φ̃k(ω) yields an analog of
the Weyl symbol Φ(nλ, α) on the cylinder:

Φ(nλ, α) =
∞∑

k=−∞

∫ +π/λ

−π/λ

dω
2π
Φ̃k(ω)eikα−iλωn. (7)

Notice that since Φ(nλ, α) is not a function on the whole
commutative cylinder, but takes values only at discrete
points of the time variable, this is not the canonical Weyl
symbol. The latter can be constructed if one considers all
possible self-adjoint extensions of the operator ∂α on a
circle. Since this is not important for our consideration,
we drop further discussion of this possibility.

The star-product for the fields Φ(nλ, α) has a form
which is very close to that appearing in flat space-time:

Φ1(nλ, α) � Φ2(nλ, α) =

e(iλ/2)((∂/∂t1)(∂/∂ϕ2)−(∂/∂t2)(∂/∂ϕ1))

×Φ1(nλ+ t1, α+ ϕ1)
×Φ2(nλ+ t2, α+ ϕ2)| t1=t2=0

ϕ1=ϕ2=0
, (8)
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where t1, t2, ϕ1, ϕ2 are auxiliary continuous variables.
On the commutative cylinder, the d’Alembertian can

be expressed through the Poisson brackets [7]:

✷Φ = {t, {t, Φ}} + ρ−2{x+, {x−, Φ}}, (9)

where
{F,G} =

∂F

∂ϕ

∂G

∂t
− ∂F

∂t

∂G

∂ϕ
.

We generalize this to the noncommutative case by re-
placing the Poisson brackets by commutators: {., .} →
(1/(iλ))[., .]. This gives the free action on the noncom-
mutative cylinder in the form

S
(NC)
0 [Φ̂]

= πηTr
{

− 1
λ2 [x̂+, Φ̂][x̂−, Φ̂] +

1
λ2 [t̂, Φ̂]2 − µ2Φ̂2

}
=
η

2

∞∑
n=−∞

∫ π

−π

dα

[
(δΦ(n, α))2−

(
∂Φ(n, α)
∂α

)2

−µ2

]
. (10)

Here

δΦ(n, α) =
1
η
[Φ(n+ 1, α) − Φ(n, α)]

(we have simplified the notation for the field: Φ(nλ, α) →
Φ(n, α)), and µ is the dimensionless parameter related to
the mass: µ = ρm. As usual for the Weyl symbol, the star-
product disappears from the trace for a product of any two
operators. In the case of a field theory in a flat space, this
leads to the free action which formally looks like the one
on commutative space. In the case of the cylinder, we have
the trace of noncommutativity even in the free action: it
reveals itself in discrete time derivatives. We stress that
this is an intrinsic property of field theories on noncommu-
tative manifolds with compact space-like dimensions and
appears in any formalism and for any operator symbols.

The Φ4-interaction term contains, in general, the star-
product:

S
(NC)
int =

g

4!
2πTr {Φ4(t̂, α̂)}

=
gη

4!

∞∑
n=−∞

∫ π

−π

dα(Φ(n, α) � Φ(n, α))2. (11)

In the momentum representation, this star-product results
in the appearance of the factors cos[λ(ωk′ − ω′k)] (here
ω, ω′, k, k′ are the energies and momenta entering the ver-
tex). These factors grow both in the upper and lower
half-planes of the complex-energy plane and prevent us
from the use of the standard Cutkosky cutting rules and,
eventually, lead to the violation of unitarity. Although in
the case of the cylinder, we have to consider only a strip
Re ω ∈ [−π/λ, π/λ] in the complex-energy plane, the con-
sideration proves to be essentially the same as in the case
of flat space-time [5] and we do not repeat it.

For a possible attempt to rescue the theory, one may
try to modify the interaction term. One possibility is to
define the action through a specific ordering prescription

for the noncommuting operators t̂ and α̂ (a situation not
obtainable from the known string theories). In particular,
a tα-“normal” ordering (i.e., the requirement that in the
operator expression for the action all operators t̂ be posed
to the left of all operators α̂) leads to the disappearance
of the star-product in the interaction term [7]:

S
(NC,tα)
int =

gη

4!

∞∑
n=−∞

∫ π

−π

dαΦ4(n, α). (12)

In a flat space-time, such a version of noncommutative
field theory exactly coincides with the usual commuta-
tive QFT (except that now one deals with operator sym-
bols instead of the usual fields, so that the interpretation
of events in space and time requires additional smearing,
while all calculations and results in the momentum space
remain the same as in the usual QFT). On the contrary,
in the case of the cylinder, even after the ordering, we
still have the trace of the noncommutativity, namely, the
discreteness of the time variable. Thus, it is interesting
to verify (see next section) whether such a variant of the
noncommutative field theory preserves unitarity. Another
motivation for this study is the persistent attempts to con-
struct quantum field theories with improved ultraviolet
behavior starting from the postulate of the discreteness of
time [9].

3 Unitarity in theories with discrete time

The free field equation of motion derived from the action
(10) reads as follows:

(δ̄δ − ∂α∂α + µ2)Φ(n, α) = 0 (13)

(here δ̄f(n) ≡ [f(n)−f(n−1)]/η), and the corresponding
propagator has the form

D
(NC)
0 (ω, k) =

1
Ω2(ω) − k2/ρ2 −m2 + iε

, (14)

where

Ω =
2
λ

sin
(
λω

2

)
. (15)

The modes which satisfy the condition k2 ≤ Λ2 ≡ 4/η2 −
µ2 correspond to the usual oscillating solutions of (13) and
resemble the solutions in the continuous-time physics. On
the contrary, the modes with k2 > Λ2 ≡ 4/η2 − µ2 cor-
respond to solutions growing or decreasing in time and
these, as we shall show soon, are unphysical. Correspond-
ingly, the propagator has two types of singular points:

(1) the oscillating modes with k2 ≤ Λ2 produce poles in
the complex-energy plane at ±ωk ∓ iε, where ωk > 0
is defined by the equality

sin2
(
λωk

2

)
=
η2

4
(k2 + µ2);
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(2) the modes with k2 > Λ2 produce poles at ωk = π/λ±
iSk, where Sk > 0 is defined by the equality

cosh(λSk/2) =
η2

2
(k2 + µ2) − 1. (16)

In order to realize the physical meaning of the two
types of modes, we use the method of the transfer ma-
trix (see, e.g. [10]). The transfer matrix Tk for a given
mode Φk(n) = (2π)−1

∫
dαΦ(n, α) exp {−ikα} in the dis-

crete time field theory under consideration has the form

Tk = exp
{

i
[
(Φk(n+ 1) − Φk(n))2

η

− η

2
(k2 + µ2)

(
Φ2

k(n+ 1) + Φ2
k(n)

)]}
.

Then the calculation of the corresponding Hamilto-
nian, defined by Ĥ = −i/λ lnT , shows that while for the
oscillating modes we obtain a harmonic oscillator Hamilto-
nian with the frequency W defined by the relation
sin(Wη/2) = η(k2+µ2)1/2/2, the modes with k2 > 4/η2−
µ2 correspond to a Hamiltonian which is not a positive def-
inite (bounded from below) operator. Thus, these modes
are unphysical ones and we have to study unitarity within
the subspace of the oscillating modes. In other words, we
have to check that the unphysical states decouple from
the physical ones similarly to the ghost fields in gauge
field theory or to unstable states [11].

We shall check the unitarity condition, i.e.

2ImMab =
∑

c

MacMcb, (17)

for the on-shell transition matrix elements Mab between
states a and b in second order of the perturbation theory
for the interaction of the form (12) (i.e., for planar dia-
grams in the case of the standard noncommutative field
theory or for a theory with the tα-ordering defined above,
or for a theory which simply starts from postulating dis-
creteness of time).

One can easily check that at the tree level the unitarity
condition in the physical sector is indeed satisfied:

�❅❅
��

��
❅❅
�2Im =

∑
k<4/η2−µ2

�❅❅
�� k

2

Next, we consider the s-channel 1-loop Feynman diagram

� �

ωk, k

ωk,−k

ωk, k

ωk,−k

(ωk − ω), q

(ωk + ω), q

✻

✲

�ω

� �
� �

❜❜

✲

❄

✛

✻

−π/λ

π/λ

L

−ωk+ωq−iε ωk+ωq−iε

−ωk−ωq+iε ωk−ωq+iε

π/λ−ωk−iSk

q2>Λ2

−π/λ+ωk−iSk

q2>Λ2

q2≤Λ2

q2≤Λ2

Fig. 1. The singularities for the two type of modes and the
contour of integration for the calculation of the imaginary part
of the amplitude; ωq = (2/λ)arcsin[(η/2)(q2 + µ2)1/2]

in the center-of-mass frame (one can easily check that the
corresponding t- and u-channel diagrams have no branch
cut singularities above the threshold). The corresponding
contribution to the matrix element reads

iM =
g2

2

∞∑
q=−∞

∫ π/λ

−π/λ

dωD(NC)
0 (ωk+ω, q)D(NC)

0 (ωk−ω, q).

(18)
The calculation of the imaginary part of the amplitude
can be carried out by closing the contour of integration in
the complex-energy plane downward as is shown in Fig. 1.

In Fig. 1, the filled circles denote the usual Feynman-
like poles at the points ω = ±ωk + (2/λ)arcsin[(η/2)(k2 +
µ2)1/2] − iε (in the lower half-plane) and at ω = ±ωk −
(2/λ)arcsin[(η/2)(k2 + µ2)1/2] + iε (in the upper half-
plane), appearing for the oscillating modes with q2 ≤ Λ2.
The small empty circles denote the positions of the sin-
gularities for the unphysical modes with q2 > Λ2 at ω =
(±π/λ ∓ ωk) − iSk. Here Sk > 0 is the solution of (16)
(there exist symmetrical singularities in the upper half-
plane, but these are not important for us). The closing of
the contour is possible due to the facts that the contribu-
tions from its vertical parts cancel each other due to the
periodicity in the energy variable, while the lower horizon-
tal part gives a vanishing contribution when the distance
L to the real axis goes to infinity. The latter is true only
for the interaction vertex without the star-product cosine
factors (i.e. for planar diagrams, or for theories with the
tα-“normal” ordering defined above or simply for a theory
with discrete time).

We separate the sum in (18) into two parts:
∑

q∈Z
=∑

|q|≤Λ +
∑

|q|>Λ and, first, we consider the part with the
oscillation modes |q| ≤ Λ. Then, proceeding in the usual
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way [12] (see also, e.g., [13] and references therein) and
taking the residues of the corresponding poles, one can
show that this part of the sum already gives the contribu-
tion which saturates the unitarity condition in the physical
sector of the oscillating modes:

� �2Im ∑
|q|≤Λ

=
∑

|p1,2|≤Λ

❅❅ ��
�� ❅❅

�
p1

p2

2

Unfortunately, the part of the sum corresponding to
the unphysical modes also gives a contribution to the
imaginary part of the amplitudes due to the poles in-
dicated in Fig. 1 by the empty circles. In general, this
non-zero contribution looks rather cumbersome, but for
the particular value of the external energy, namely for
ωk = π/(2λ), it becomes quite simple:

[2ImM ](unph)|ωk=π/(2λ)

=
g2

4(2π)2
∑

|q|>Λ

(q2 + µ2)3/2(q2 + µ2 − 4/η2)−1/2.

The proof of the unitarity violation for theories with
flat space-like dimensions (e.g., for the one proposed in
[9]) goes essentially in the same way (with the only dis-
tinction that the sums over momentum modes is substi-
tuted by the corresponding integrals). Thus, the theories
with a discrete time variable do not satisfy the unitarity
condition.

4 Conclusions and remarks

We have shown that the transition to noncommutative
spaces with compact space dimensions does not help in
restoring unitarity in the theories with space and time
noncommutativity. We also have proved the more gen-
eral statement that any theory with discrete time variable
meets with the same problem.

It is clear from the previous section that in the absence
of the cosine factors in vertices, coming from the star-
product, the origin of the nonunitarity in theories with
discrete time is the appearance of the unphysical nonoscil-
lating modes. Notice that if one takes a specific value of
the parameter of noncommutativity, namely η = 2π/N
(N is a positive integer), the basic operator exponentials
in (4) satisfy the commutation relation

eit̂eiα̂ = ei2π/Neiα̂eit̂,

and possess finite-dimensional representations [14]. This
implies that for a small mass m ∼ O (

N−2
)

appearing in
(10), we can get rid of the unphysical modes. However, the
choice of the noncommutativity parameter as indicated
above, means, actually, a transition to the quantum torus
[15], i.e., to a manifold with closed (compact) time-like
curves. As is well known [16], theories on such manifolds,

even in the commutative case, have their own problems
with causality and the formulation of the unitarity condi-
tion. Therefore, we do not pursue this possibility further
here.

Theories with space-time noncommutativity suffer also
from the violation of causality. In [4], this fact was demon-
strated by the example of the scattering of wave-packets.
Another possibility to see the violation of (micro)causality
is to calculate the matrix elements of equal-time commu-
tators of some observables in this theory. We note that in
physical applications one has finally to smear over the non-
commutative coordinates in field operator symbols, since
the symbols themselves do not reflect the values of the
operator coordinates [7]: Φ(x) ≡ 〈x| Φ̂(x̂) |x〉, where |x〉 is,
for instance, a (maximally localized) coherent state. This
smearing would make a difference in the interpretation of
violation of, e.g., (micro)causality if the violation would
be occurring only at the scales of the order of λ and not
growing with the energy.

In particular, for quadratic observables we have1:

〈0| [Φ2(x), Φ2(y) |p,k〉 |x0=y0 ≈ e−(x−y)2/(4λ2). (19)

The asymptotic behavior (19) has been derived for the
case when the distance between two points is large: |x −
y| � λ, and the momenta p,k are not too high (the re-
sult looks similar for both cases of a flat space-time and
the cylinder, if the distance is understood accordingly).
For large values of momenta p and k of a two-particle
state |p,k〉, however, the exponential damping (19) does
not occur anymore. Actually, this violation of the causal-
ity (as well as that observed in [4]) can be interpreted as
the impossibility of a precise simultaneous measurement of
space and time coordinates, in accordance with the orig-
inal idea presented in [2]. We also mention that in NC
theory with the tα-“normal”(“time-space”) ordering pre-
scription all the commutators between observables would
vanish at space-like distances.

Another interesting question concerning the NC field
theories is the problem of causality and the spin-statistics
theorem [17] (see also, e.g., [18]). As is well-known, in
the usual commutative quantum field theory the require-
ment of vanishing of commutators for physical observables
at space-like distances (i.e., causality) leads uniquely to
the spin-statistics theorem. Since in NC field theory such
commutation relations are not equal to zero as explained
above, one has, in principle, no longer the same arguments
for the derivation of the spin-statistics relation and thus
the modification of the latter is not excluded2. We have
studied several most natural modifications of the usual
spin-statistics (i.e., modifications of the commutation re-
lations for creation and annihilation operators) and found

1 Notice that all the vacuum expectation values (vacuum–
vacuum matrix elements) of the commutators between observ-
ables at space-like distances identically vanish for the NC field
theories exactly like in the commutative case

2 It is interesting that the CPT -theorem remains valid in
NC field theories [19], but it is known that the CPT -theorem
requires weaker assumptions than the spin-statistics one does
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out that they are not only unable to help in the restoration
of causality (cf. (19)), but instead they lead to commuta-
tion relations which are nonvanishing as in (19) but with
a scale of the mass of the field m instead of 1/λ as in (19),
which is even a more severe violation of causality. This
violation of (micro)causality is of exactly the same form
as which occurs in the usual commutative field theories
when one modifies the spin-statistics relation.
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